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Global Solutions of the Boltzmann Equation on a Lattice 
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The nonlinear Boltzmann equation with a discretized spatial variable is 
studied in a Banach space of absolutely integrable functions of the velocity 
variables. Conservation laws and positivity are utilized to extend weak 
local solutions to a global solution. This is shown to be a strong solution by 
analytic semigroup techniques. 
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1. I N T R O D U C T I O N  

A l t h o u g h  the Bol tzmann  equa t ion  was first derived over  100 years ago,  4 the 
existence of  solut ions  to the full nonl inear  equa t ion  is bare ly  unders tood .  
The  first significant pape r  seems to have been wri t ten by Car leman,  (2~ who 
t rea ted  hard-sphere  molecules in the spat ia l ly  homogeneous  case. G r a d  (a~ 
presented  an existence p r o o f  for  the spat ia l ly  dependent  case for  small  t imes, 
and  a g lobal  solut ion for  the spat ia l ly  homogeneous  case for  "mod i f i ed  
Maxwel l  molecules ,"  i.e., molecules in teract ing th rough  an  inverse-fifth- 
power  law with a cutoff  at  some finite range.  (The inverse fifth power  leads 
to a coll is ion cross sect ion which is independen t  of  the relative speed o f  the 
col l id ing molecules,  and  the cutoff  gives a finite col l is ion rate.)  In  bo th  Refs. 
2 and  3, incidental ly,  the init ial  d i s t r ibu t ion  was, to  some extent,  restr icted.  
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This lack of generality is crucial to Carleman's estimates and Grad's treat- 
ment of the spatially dependent case. 

Morgenstern (4~ obtained a global solution for the spatially dependent 
case by introducing a "mollifying kernel" into the collision term, as is done, 
for example, in treating infrared divergences in quantum field theory. (5~ 
Again, the popular "modified Maxwell" case was considered. This mollifier 
removes the difficulty one encounters in trying to norm products like 
~o(x, v)cp(x, v') in an Lz space. 

More recent studies have dealt with systems close to equilibrium, (e-9~ 
while Povzner (z0~ has considered a mollifier similar to that of Ref. 4. Much 
of the recent work (e.g., Ref. 7) employs norm estimates in spaces whose 
physical relevance is difficult to envision, and in our work as reported here 
we attempt to avoid this by working in a simple Lz space. Also, we place 
minimal restrictions on the initial data, unlike some of the earlier work 
mentioned above. In particular, our initial data can be arbitrarily far from 
equilibrium. On the debit side of our ledger is the fact that we are unable to 
deal with other than modified Maxwell molecules; in particular, our present 
techniques cannot be used for hard spheres, although we hope to deal with 
that case in a subsequent publication, perhaps by introducing a velocity cutoff 
and proving the existence of a limit, or by suitably restricting the initial data, 
as was done, for example, in Ref. 2. 

More importantly, our Boltzmann equation is set on a (periodic) 
lattice, i.e., we replace the gradient term by a finite difference approximation. 
In this way we avoid the introduction of the mollifier. 

On the credit side, our proof, as mentioned above, is essentially inde- 
pendent of the initial distribution, and applies for all times. Again, we plan 
to consider in a subsequent paper the question of the limit as the lattice 
spacing tends to zero, following methods which are familiar in field theory. (5~ 

The reader intent on studying the details of the collision term in the 
Boltzmann equation and its properties should consult Ref. 3, or a kinetic 
theory text (e.g., Ref. 11). Our basic methods are adaptations of techniques 
described by Reed and Simon (12~ for dealing with nonlinear differential 
equations. The reader should consult that reference and Ref. 14 for relevant 
mathematical background. 

2. F O R M U L A T I O N  OF THE IN IT IAL  V A L U E  P R O B L E M  

We consider the equation 

~,r~ (c, t)  + (A, 'V)~(c, t) = a ( ' r ,  , r) ,  - D('r)~v~ (1) 
at 

Here the index i is the spatial index denoting the ith lattice point in the 
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periodic three-dimensional cube A% while c is the (dimensionless) velocity 
vector. The operators A, G, and D are defined below. We seek solutions in 
the Banach space 

•3 

B = @ LI(~3)  
t = l  

where n 3 represents the number of  lattice sites. In B we have 
~8 o 0  

IlVll = ~ ~_ l~,(c)l dc (2) 
i = i  ~o 

(When the meaning is obvious, we shall suppress the spatial variable i.) We 
denote by 3-+ the cone of positive functions in B, and by ~ ( f + )  the cone of 
measurable functions iF(.): ~ + -+ ~Y'+. 

The operator A with domain ~(A) is the finite difference approximation 
to the gradient term. To give A specifically, let ~r be an identification between 
the lattice A 3 and the first n 3 positive integers. Then A is an n 3 x n 3 matrix: 

.4~j = ~ (c.~)~X~(c) (3) 

where 

A~(e) = 8 u - 3~,~(=-lu~+a~, c.~/ > 0, A a ( - c )  = k~(c) * (4) 

and the sum is over the three orthogonal coordinate vectors ~. The periodic 
boundary conditions are imposed by viewing the lattice as a three-dimensional 
torus, and thus Tr- l( j)  + ~/e A a for every j. 

A convenient representation of A can be obtained in terms of tensor 
products. Suppose first that e . ,  cy, c. /> 0. Consider the n x n matrix E 
defined by 

/'8.,j, i = 1 E,j 
J ~8~,j+1, i > 1 

Then the lattice sites can be numbered such that 

A = (Cx + cu + c z ) I | 1 7 4  c x ( E | 1 7 4  

- c~(I | E | I )  - c ~ ( / |  Z | s  (5) 

(Here I is the n x n identity matrix.) We observe E "  = I. Further, if any 
c, < 0, the corresponding representation of A is obtained from Eq. (4), i.e., 
E--+ E*.  

The collision terms G and D are, by virtue of the assumed collision 
model, bounded bilinear (resp. linear), positivity-preserving functionals 
G e ~ ( B  x B, B) and D c ~C~(B, L~~ with the invariance property 

f de/(c){a(v, ,v) - D('V)'F} = 0 
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for I(c) a "collision invariant" (3,11) and tF ~ B. We denote in the usual way 
the operator norms [[G[[ and ]]D]]. 

Finally, a solution of Eq. (1) is defined to be a strongly differentiable 
map ~ :  R+ ~ B satisfying a specified initial condition tF(0) = ~0 E ~(A) n 
J-+. Our method of proof will be to convert Eq. (1) to a pair of integral 
equations, Eqs. (6) and (7) below. 

These equations are the same as those used by most of the authors 
quoted previously, although our approach is novel in that we utilize both 
equations for a single existence proof. [For example, Grad (3~ uses Eq. (6) to 
deal with the spatially dependent case and Eq. (7) for the homogenous case; 
but see Arkeryd, (~3~ who also uses two equations for treating the spatially 
homogeneous case.] 

The existence of a solution to Eq. (6) for sufficiently small time will be 
demonstrated using standard iterative techniques. We then demonstrate that 
any solution of Eq. (6) is also a solution of Eq. (7). Again, iterative techniques 
are required. Moreover, solutions of the latter are positive, and thus the 
solution of Eq. (6) is positive. This fact, along with the invariance property 
written above, suffices to extend the local solution to all time. Unicity appears 
as a corollary. 

The first integral equation is obtained from Eq. (1) by treating A as the 
generator of a semigroup: 

f2 ' r ( t )  = e-tAro + e-~'-s~A{a(V'(s), V'(s)) - D(V'(s))'V(s)} ds (6) 

The second integral equation is obtained by treating D(~F)~F as a perturbation 
of A: 

ui'(t) = Tv(t, O)q~o + Tv(t, t')G(~F(t'), W(t '))  dt '  (7) 

where Tv(t, S)~o is a solution of the homogeneous equation 

d~/dt + A~ + D(~)~ = 0 

satisfying ~o(s) = Go- (In physicist's jargon, T~, is a time-ordered exponential.) 

3. S E M I G R O U P  PROPERTIES  A N D  THE ITERATIVE  S C H E M E  

We begin by studying the properties of the two-parameter evolution 
operator Tv(t2, tl) and of the semigroup 

U(t) = e -tA, t e ~+ (8) 

We collect the main results in Theorem 1. 
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Theorem 1. (a) U(t) and Tv(t2, tl) are invariant on the cone of positive 
functions Y+ c B for t and t2 - tl positive, and ~F E fC(Y+). 

(b) U(t) is a contraction semigroup and continues analytically to a 
bounded holomorphic semigroup U(z). 

(c) T~(t2, q) is a contraction mapping on B for t2 - tl > 0 and �9 e 
~r 

Proof. Noting that A r~ is bounded on the subspace of functions in B 
with support in a fixed, compact K c IR 3, we may represent the exponential 
e -tA by its power series on the dense linear manifold Mo of functions in Y+ 
with compact support; in fact, Mo is an invariant domain for A and hence 
for U(t). We note that M0 can be written as the infinite union of subspaces 
MN of functions with support in the hypercube about the origin with sides of 
length 2N. Since the off-diagonal terms of - A  are positive for a fixed power 
of A, say A l, if ( - - A m ) t c i  ----- O, m <~ l, then (--Al+Z)ki /> 0. Therefore, every 
element of e -tA is a power series in t [c. z~ I with positive coefficient to lowest 
order. Hence, for tlc.~l sufficiently small, e -tA has nonnegative entries, and 
(e-tAf) i >- 0 f o r f ~  9-+ C~ M~. But since e - 2tA = e-*Ae -tA, the result extends 
to arbitrary t. Therefore U(t)J-+ c~ M~ c y+ n MN and thus U(t)3-+ c ~y-+. 

On MN, d ( t ) =  - A  - D(~(t)) is a bounded operator, and T~(s, t) is 
given explicitly by the limit <~4~ 

Te(t, s) = s-lim exp ~r dt' exp j~ d ( t , )  dt' ... exp d ( t ' )  dt' 
m--,  ce ' J t m - z  t i n - 2  o 

(9a) 

where the limit is taken over n-partitions t = t m > t m _ l  > "'" > t l  > to = s .  

Using the Lie product formula and the uniform boundedness of the 

exp ~ t, +~ d ( t ' )  dt', 
d t  l 

we can represent Tv(t, s) as a double limit 

Te(t,s) = s-lirno ] i m { [ U (  .t" ~ ' ~ - ~ ) e x p  -J '::-~ D(tF(s))ds] "... 

x [ U ( ~ - - ~ ) e x p  - f : :  D(~(s))ds],}n (9b) 

But D is diagonal and positive on J '+,  and therefore so is 

exp{ (t,+~ ds)  - -  ~ t ,  D ( ~ ( s ) )  

Thus T~(t, s)g-+ ~ 9-+, completing the proof  of (a). 
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To prove  (b), we note that  the s t reaming opera to r  A has the p roper ty  
that  

~3 

(Am),, = 0 (10) 
i = l  

for  any m e Z+.  By a simple calculation, U(t) is seen to be isometric  on :~-+. 
But a 3-+ invar iant  contract ive linear m a p  S is a contract ion on B. For ,  by 
d e c o m p o s i n g f e  B a s f  = fx - f2 ,  f e Y+,  it is evident tha t  

Ilafi[ < IJsAli + Ilaf21[ < IIAll + HAll = llf[l 

Thus  U(t) is contractive.  
To  prove  that  U(t) continues to a bounded  ho lomorph ic  semigroup we 

first consider the case c~ > 0 and derive an explicit representat ion for  

U(~:) = Ux(0  | Uy(~:) | U~(~:) (11) 

I f  we define E1 = E and E~ = E~_IE, then E.+= = E~ and E .  = I = Eo. 
Therefore ,  setting cx~ = s, 

eS E = 1 s~E~ = 
~=o F! ~=o = ( np+  a)! E .  =- ~=of~(s)E~ (12) 

Let  w. be a primit ive nth roo t  o f  unity: 

W a ~ e2ntaln 

Then  
n - 1  

eSWa = ~ fB(s)w~ (13) 
3 = 0  

Thus  the coefficients f can be found f rom Eq. (13) and substi tuted into (12). 
One easily obtains 

and 

= W _  ~le sw~ f~(s) n ,  

1 n ~ l  

To verify that  Ux(s) is a bounded  ho lomorph ic  semigroup,  it is sufficient to 
show (15) tha t  Ux(s) and sAUx(s) are bounded  uniformly in a sector ~0 c C, 

5ao = {z] [argz[ < 0 < ~r/2} 
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Write s = u + iv and w~ = cos 0t + i sin 0~. Then we see from Eq. (13) that 
Ux(s) will be uniformly bounded for 

u >/ sin 0~ = 0~ 
v cos 0~ - 1 - c t n  ~- 

an inequality which can always be satisfied for positive u. (A completely 
analogous computation gives the same result if cx < 0). The uniform 
boundedness of U(t) now follows from Eq. (11). 

The uniform boundedness of sAUl(s) ,  and hence of sAU(s) ,  is an 
immediate consequence of the boundedness of the function g(t:) = {:e -e, 
Re ~: >/ 0. This proves part (b). 

Finally, exp{-J" D(T(s ) )  ds} is clearly contractive, since D is positive. 
Again by the representation, Eq. (9b), T~(t2, q )  is the limit of a product of 
contractions, proving (c) and thus completing the proof of the theorem. 

Note that on Mo, T~(t2, q )  is given explicitly by the DYSon series repre- 
sentation of the time-ordered exponential 

J0 Ft d0Ftl fl n-1 T~( t2 , tl) = I q- z.~ [ dtl | dr2 ... dtn ~ ' ( t z ) . . .  ~r 
n = j .  

Coro l l a ry  2. For a l l f e  B, 

if, (U( t ) f ) ,  = ~ f~ i=l /=1 
We remark that this corollary shows (loosely speaking) that our lattice 
approximation preserves translational invariance. This turns out to be a key 
element in our existence proof. We now solve Eq. (6) by iteration, defining 

and 

To(c,t) = ~o(C) (15a) 

p ,  t 

T, (c ,  t) = U(t)q~o(c) + Jo U(t - s ) J ( T , _ l ) ( s )  ds (15b) 

where we have defined 

J O ' )  = GO' ,  T )  - D e V ) T  (15c) 

Proposition ;3. For t sufficiently small, llT,(t)ll ~< M, independent of 
t and n. 

In fact, the proof is immediate. For, liT, i] ~< IIq~oll + tHJI] IIT,-zI] 2, and 
the result follows for t < 1/4llJ[I IIq~oll. 

Likewise, the sequence {T,} may be shown to be Cauchy by the estimate 

[IT,+1 - T,I  I ~< tl]J(T,) - J(T,_J]]  ~< 2I]]JIIMIIT . - T,_~]] 
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Continuous dependence of the fixed point on the inital datum ~o is immediate. 
Thus, we have the following result: 

Proposition 4. The iterative scheme (15) converges to a solution 
W(t) of Eq. (6) for t < min{1/(4[lJl[ ll~oII), 1/(2IIJIIM)) and ~F(t) is a con- 
tinuous function of the initial datum cpo. 

Our next step is to prove that a positive solution exists to Eq. (7), again 
for suff• small time. Define the iterative scheme 

Wo(C, t) = ~o(C) 

% + ~ ( c ,  t)  = T~.(t,  0)~o(C) + T~.(t, t ' ) a W . ( t ' ) )  dt '  

where 
result: 

(16a) 

(16b) 

we have written G ( ~ ( t ) )  - G(~F(t), ~F(t)). We have as before the 

P r o p o s i t i o n  5. For  t sufficiently small, II%(t)l[ ~ M1 independent of 
t and n. 

Now, to prove the sequence {tF.} is Cauchy, let us define 

f2 ~F,+~12(c , t)  = rv ,_z ( t ,  0)Cpo(C ) + r~, ~(t, t ' )G(~F,(t ' ) )  d t '  

t 

and write S for supo.~ ~.~t. Then from the boundedness of G and Theorem l(b), 

we have immediately the estimate 

t 

11%+~,2(t} - "I'.(t}ll ~ t llC[l s ll'V.(s} - ~ . - l (s} l l ( l l 'V.II  + IL~.-l l l}  

t 

.< 2t ttGIIM~ S II'V.(s} - 'v._l(s)11 

for t sufficiently small. Using Theorem l(b) again, we obtain 

] l%+~(t)  - %+1,2(t}ll  ~ IIr~~ 0} - r~._~(t.  0)1111~ooll 
t 

+ t s IIT~.(t, s)  - r~ ._ l ( t ,  s)l[ Ilall IIV.(s}ll 2 

In order to estimate IIT~. - T~._~II, let us define 

x( t )  = (Tv,( t ,  s)  - r v ,_ l ( t ,  s))~: o 

for fixed s. Then X is the solution of the coupled system 

dW 
d--i- + [A + D(tFn(t))l~F = O, W(s )  = ~o 

clg + [A + D(tF~_~(t))]X = D ( W . _ z ( t )  - W. ( t ) ) 'F ( t ) ,  X(S) = 0 
dt 
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We may write 

But then 

Thus, 

x(t)  = r~~ s ) D ( % _ ~ ( s )  - %(s ) ) ' e ( s )  as 

t 

/Ixll ~ tllDll S W~(s)  - %-~(s ) l l  I1~:oll 

t 

II%+~(t) - %+1,~(t)11 ~ ]lolI(tH~oli + t2I[G]rMz 2) S ilW'n(s) - W'._~(s)]l 

Collecting these results, it is sufficient to assume 0 ~< t ~< To, for To -z = 8 
IIGIIM~ + 8M1 + 5l]O[[]]q)oil to obtain 

t 

II~,+l,2(t) - ~ , ( t ) l  I ~< (1/4)S II%(s) - %-~(s)II 
t 

W.+~( t )  - 'v.+l,~(t)ll ~ (1/4)s  H%(s) - % - l ( s ) l l  

From these estimates it is evident that the sequence {~,} is Cauchy. 
We have thus proven the following: 

T h e o r e m  5. Define T,(c, t) by the iterative scheme, Eqs. (16). Then 
for t sufficiently small, ~ , ( t )  converges in B to T(t), and tF is a solution of 
Eq. (7). 

From Theorem l(a) and Theorem 5 we have the following: 

C o r o l l a r y  6. ~ ( t )  ~ ~Y-+. 

4. G L O B A L  S O L U T I O N S  

Proposition 4 and Theorem 5 demonstrate the existence of local solutions 
to the integral equations (6) and (7). Such solutions are often referred to as 
"mi l d"  local solutions to the original equation. In this section we first 
extend the mild solutions to global solutions, i.e., solutions for all time, and 
then,' by demonstrating differentiability, prove that the mild solutions are in 
fact strong solutions. As a by-product, we obtain unicity. 

T h e o r e m  6. Let ~F1, ~F2 be solutions of Eqs. (6), (7), respectively, 
satisfying ~1(0) = ~F2(0) = cp0. Then ~'z = ~2. 

Proof .  By using the evolution group property T ~ ( t , s ) T ~ ( s , r ) =  
T~,(t, r), r <~ s <~ t, we may compute from Eq. (7) 

�9 ~(t + s) = T~$t + s, t) T~( t ,  0)~o + T~$t, t')a(~F~(t')) dr' 

t + s  

+ r~$ t  + s. t')aCe2(t')) dr' 
J t  

= T ~ ( t  + s, t)[~2(t) + sG(tF2(t)) + O(s)] (17) 
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Let us define 

Comput ing  

we have 

~(s) = [T~=(t + s, t) - U(s)]~:o 

Therefore,  

~l/~s = --[A + D(W~(t + s))]Te2(t + s, t)~o + A U(s)~o 

= - [ A  + D(tF2(t + s ) ) ] ~ ( s )  - D(tF2(t + s))U(s)~o 

~(o)  = o 

~(s) = - f ~  Te2(t + s, t + t ' )D(W2(t  + t ' ) )U( t ' )  dt '  Co 

Tv2(t + s, t)~o = U(s)~o - T~2(t + s, t)D(W2(t))~o + O(s) 

= U(s)~o - sU(s)DO'~(t))~o + O(s) 

Combining this with Eq. (17), we may write 

W2(t + s)  = U(s)[tF2(t) + sG(tF2(t)) - sD(W2(t))tF2(t)] + O(s) 

On the other hand,  

Wz(t + s)  = U(s)U(t)cpo + U(s)U(t  - t ')S(W~(t')) dt '  

~ t + s  

+ U(t + s - t ' )J( tF~(t ' ) )dt '  
t 

= U(s ) [~ ( t )  + sJO~(t))] + o(s)  

Thus 

xF2(t + s)  - xFl(t + s) = U(s)(W2(t) - ~Fl(t) 

+ s [J(~F2(t)) - J(~Igl(t))]} + O(s) 

Letting p(t )  = l[~F2(t) - Wl(t)][, we have immediately 

p(t  + s)  - p( t )  <~ sllJO'=(t)) - JO'1(t))]] 

~< s l l J [ I ( l t ' r= ( t ) l l  + I ?~ ' l ( t ) l l )11 ' r2 ( t )  - w ' l ( 0 I [  

o r  

~ + p ( t )  <~ 2HJllmp(t) 

where rn = sup{]lw~(t)[I [ i = I, 2, 0 ~< t ~< To}. By Gronwall ' s  Lemma 'is '  

p(t )  <~ p(O)e 21j~llmt = 0 

completing the proof.  
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C o r o l l a r y  7. The solution to Eqs. (6) and (7) is unique. 

We now prove the solution of Eq. (6) is differentiable in t and thus is a 
solution of Eq. (1). Our proof  utilizes Kato's Theorem, (~6~ which we para- 
phrase below: 

Theorem (Ka to ) .  Let T be the generator of a holomorphic semigroup 
U(t )  on a Banach space X, and f :  1~+ ---> X a H61der continuous function. 
Then the equation 

dq~(t)/dt = -Tq~( t )  + f ( t ) ,  t > 0 

subject to r -- fo ~ X, has the solution 

f2 = u ( O f o  + u ( t  - s ) f ( s )  ds 

and ~o(t) is continuously differentiable for t > 0. 
Referring to Eq. (7), it is sufficient to show that 6(~'(t), 'F(t))- 

D(~F( t ) )~( t )  is H61der continuous, since we already have shown [Theorem 
l(b)] that U(t )  - e -At is a holomorphic semigroup. It is not too difficult to 
see that the H61der continuity of G(~F, ~ )  - D(LF)~F in t follows from that 
of ~ ,  so we prove that ~ is H61der continuous. 

Lemma 8. For  % E J +  c~ ~(A), {tFn(t)}, as specified by the iterative 
scheme, Eqs. (15), are differentiable on some interval [0, To], and the deriv- 
atives {W((t)) are uniformly bounded (in t and n). 

Proof .  To compute the derivative we estimate 

Wn(t + h) - W , ( t )  = (U(h)  .- 1)tFn + hU(h)J ( tF ,_z ( t ) )  + O(h) 

= (U(h)  - 1 )JU( t )~o  
f 

, t  

+t 0 

U(t  - t ' ) [J ( tF ._z ( t ' ) )  - J(tF._z(t)) ] dt '  

U(t  - t ' )Y ( tF ._ l ( t ) )  d t ' ~  
) 

+ hU(h)J(~Fn_l( t))  + O(h) 

Therefore the right derivative ~+ tF .  is 
t ( .  

~ + ~ . ( t )  = AU(t)q~o + A j0 U ( t -  t ')[J(tF=_x(t))] dt '  + U(t )J(Wn_~(t ) )  

where we have used the identity 

A U(t - t ' ) d r '  = U( t )  - I 
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Then a bound on ~ + P ~ ( t )  is obtained by the estimate (Ref. 14, p. 489) 
JlA U(t)l I ~< Kit for  analytic semigroups, where K is some constant.  Thus for 
n ~ > 2 ,  

]l~+'/~.(t)l l  ~< j]A~oo]l + t l l A u ( t  - t')[[ l l J ( ' z . - l ( t ' ) )  - J ( P . - l ( t ) ) n  

+ it J(tF,_~(t))][ 

<~ llA~ool] + tK]lJ][2 m []~F,_~(t') - P,_~(t)][ + ]lJllm 2 (18) 
t ' - t  

and a uniform bound is obtained inductively by estimating Lipschitz constants 
K,  for  the {P,}. Indeed,  for  n = 1, 

f2 ~ + P l ( t )  = A S ( t ) p o  + A S ( t  - t ' )J(%) dr' + J(Po) 

= u(t)A~Oo + u( t )J (~o)  

Thus ~F 1 is Lipschitz with constant  K1 = LIA~oo[I + lfJII 1[~oll 2, Using the 
differentiability of  ~f~ and the estimate (18) for  I1~+~11, we have 

] 1 % ( 0  - 'V.(s)ll ~< (llA~oll + [[JHm z + 2tKm[IJ l lg . -~ ) ] t  - s[ 

so that  

g ,  = ,z + t f lg ,_ l ;  c~ = IIA~ooll + ]]J]]m 2, fi = 2gm[[JII 

which is uniformly bounded for t < 1/(2gm]]J]]). This proves the theorem. 

C o r o l l a r y  9. The {tF,(t)) as specified by the iterative scheme, Eqs. 
(15), are Lipschitz with a uniform Lipschitz constant  K~o = ~(1 - Toil) -1 for  
t < T o .  

We now state the following result: 

T h e o r e m  ] 0. For  ~00 e J-+ n -@(A), the solution of  Eq. (6) is differenti- 
able, and therefore a solution of  Eq. (1), for  t < To. 

Proof. All of  the conditions of  Kato 's  Theorem,  as stated above, are 
satisfied. 

Our  final step is to extend our  solution LF(t) to a global solution. 

Proposition 11. For  q~0 e J-+ r~ ~(A),  ] l v ' ( t ) / ]  = [1 o11 for t sufficiently 
small that  xF(t) obeys both Eq. (6) and Eq. (7). 

Proof. Integrate Eq. (6) over c and sum over the spatial index i. Re- 
calling ~F ~ 3-+ and e -~A = U ( t )  is an isometry on E+, we obtain 

]l'Vll = [[~o]1 + dc as ~ ,  {U(s)[G( 'V(s)  - O('V(s)) 'V(s)],  as 
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Using Corollary 2, this becomes 

II'Vl[ = I1 011 + ds dr [ c ( ' r ( s ) )  - D(,r(s)),r(s)] 
i 

But f dc [G(~(s)) - D(~F(s))'T'(s)] = 0, since 1 is a collision invariant. This 
proves Proposition 11. 

But now, the global property of  the solution ~F(t) follows immediately, 
for the solution can be obtained in sufficiently small time steps, and this 
procedure, by virtue of Proposition 11, can be continued ad infinitum. We 
collect all of the above results as the following theorem: 

Theorem 12. Suppose ~00 ~ Y+ n ~@(A). Then there exists a unique 
positive solution T ( t )  of  the integral equation (6)--or,  equivalently, Eq. 
(7)--for  all t 1> 0, and (i) ~F(t) is a continuously differentiable solution of 
the Boltzmann equation (1) for all t > 0; (ii) ~F(t)e Y+, t >/ 0; (iii) ~F 
depends continuously upon the initial datum ~0. 
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